

CONTENIDO PROGRAMÁTICO	Fecha Emisión: 2018/02/09	AC-GA-F-8
	Revisión No. 3	Página 1 de 9

INGENIERÍA BIOMÉDICA	
CODIGO	172714
ASIGNATURA	CAMPOS ELECTROMAGNÉTICOS Y BIOCAMPOS
ÁREA Y/O COMPONENTE DE FORMACIÓN	PREGRADO
SEMESTRE	V
PRERREQUISITOS	Física mecánica, física eléctrica
COORDINADOR Y/O JEFE DE ÁREA	ADRIANA QUIROGA
DOCENTE (S)	Beynor Páez, Raul Cruz
CRÉDITOS ACADÉMICOS	4
FECHA DE ELABORACIÓN/ACTUALIZACIÓN	19/11/2020

JUSTIFICACIÓN

El electromagnestimo desempeña una función significativa en la ingeniería biomédica. La interacción de los campos electromagnéticos con el sistema biológico ha sido un aspecto importante en numerosas investigaciones. El uso de campos electromagnéticos de alta resolución han permitido realizar modelos del cuerpo humano en 3D sobre aspectos eléctricos y magnéticos. Por tanto la evolución de herramientas tomográficas y de contraste han avanzado notoriamente en el análisis y diagnóstico de seres vivos. Los aspectos electromagnéticos como la permeabilidad relativa, permitividad y conductividad entre otras, son aspectos inherentes en los tejidos.

OBJETIVO GENERAL

Presentar y desarrollar aspectos generales de bioelectromagnetismo aplicados a sistemas vivos.

COMPETENCIA GLOBAL

El curso busca involucrar al estudiante en el uso de herramientas teóricas basadas en el campo electromagnético para investigar propiedades eléctricas y magnéticas de sistemas biológicos.

COMPETENCIAS ESPECÍFICAS

- 1. Identificar propiedades físicas de los sistemas biológicos y establecer estrategias de medición de parámetros .
- 2. Establecer criterios biofísicos para proponer posibles biodispositivos para aplicaciones específicas.

CONTENIDO GENERAL

UNIDAD 1. ASPECTOS BÁSICOS DEL CÁLCULO VECTORIAL

1.1. Importancia del cálculo vectorial en la ingeniería biomédica.

El uso no autorizado así como la reproducción total o parcial de su contenido por cualquier persona o entidad, estará en contra de los derechos de autor.

CONTENIDO PROGRAMÁTICO	Fecha Emisión: 2018/02/09	AC-GA-F-8
	Revisión No. 3	Página 2 de 9

- 1.1.1. Operaciones con vectores: producto punto, producto cruz, norma, suma y resta de vectores.
- 1.1.2. Gradiente.
- 1.1.3. Divergencia y rotacional, campos conservativos.
- 1.1.4. Identidades vectoriales.
- 1.2. Teorema de stokes.
- 1.3. Teorema de la divergencia.

UNIDAD 2. ANTECEDENTES BIOELECTRICOS

- 2.1 Modelos atómicos. Átomos y moléculas en los seres vivos.
- 2.2 Subdivisiones del biolectromagnetismo según las ecuaciones de Maxwell y el principio de reciprocidad.
- 2.3 Premios Nobel en bioelectromagnetismo: leyes de la dinámica química presión osmótica, disociación electrolítica, estructura eléctrica del sistema nervioso, termoquímica, mecanismo del electrocardiograma, función eléctrica de las neuronas, función específica de fibras nerviosas, transmisión del impulso nervioso, canales en membranas celulares.
- 2.4 Ecuaciones de Laplace y Poisson. Aplicaciones en el análisis de la membrana celular.

UNIDAD 3. FLUIDO DE CORRIENTE ELECTRICA EN LA CELULA

- 3.1. Célula nerviosa.
- 3.2. Función bioeléctrica de la célula nerviosa.
- 3.3. Impulso eléctrico en el axón.
- 3.4. Potencial de reposo de la célula.

UNIDAD 4. FENÓMENOS DE MEMBRANA POR DEBAJO DEL UMBRAL

- 4.1. Ecuaciones de Nernst
- 4.2. Potencial eléctrico y campo eléctrico.
- 4.3. Ecuación de difusión.
- 4.4. Ecuación de Nernst-Planck.
- 4.5. Ecuación de Nernst.
- 4.6. Origen del potencial de reposo.
- 4.7. Membranas celulares con permeabilidad multiónica.
- 4.8. Flujo de iones a través de la membrana celular.
- 4.9. Ecuación del cable para el axón.

UNIDAD 5. COMPORTAMIENTO ACTIVO DE LA MEMBRANA

- 5.1 Voltaje de pinza o *Patch clamp*, ecuación generalizada de la corriente eléctrica a través de la membrana.
- 5.2. Técnicas experimentales para la medición de la corriente de patch clamp y modelo eléctrico de la membrana celular.
- 5.3. Voltaje de pinza para los voltajes de Nernst del sodio.
- 5.4. Modelo de Hodgkin-Huxley para la membrana celular.

UNIDAD 6. EL CORAZON

- 6.1. Activación eléctrica del corazón.
- 6.2. Sistema de conducción eléctrica del corazón.
- 6.3. Ondas de despolarización y repolarización del corazón.

UNIDAD 7. Dipolos

CONTENIDO PROGRAMÁTICO	Fecha Emisión: 2018/02/09	AC-GA-F-8
	Revisión No. 3	Página 3 de 9

- 7.1. Fibra aislada: Fuente de la corriente de transmembrana.
- 7.2. Equivalentes para las densidades de monopolos y dipolos.
- 7.3. Conductores multicelulares.

UNIDAD 8. Bioelectromagnetismo

- 8.1. Naturaleza de las fuentes biomagnéticas.
- 8.2. Dipolo magnético de una fuente volumétrica.
- 8.3. Electroencefalografía.
- 8.4. Magnetoencefalografía.

CONTENIDO

Semana	Tema o actividad presencial	Actividades de trabajo independiente			
1 Enero 25 –	Operaciones con vectores: producto punto, producto cruz, norma, suma y resta de vectores. Identidades vectoriales.	Ejercicios sobre operaciones vectorial			
30	Inducción.	Lectura Aulas virtuales y preparación de informes			
2 Febrero	Gradiente, divergencia y rotacional, campos conservativos.	Ejercicios sobre gradiente, rotacional y divergencia			
01 – 06	Práctica de laboratorio: Operaciones vectoriales	Lectura Aulas virtuales y preparación de informes.			
3 Febrero	Teorema de stokes. Teorema de la divergencia	Ejercicios sobre teorema de Stokes y de la divergencia			
08 – 13	Práctica de laboratorio: Rotacional y divergencia.	Lectura guía de laboratorio, página web del curso.			
4 Febrero 15 – 19	Modelos atómicos. Átomos y moléculas en los seres vivos. Subdivisiones del biolectromagnetismo según las ecuaciones de Maxwell y el principio de reciprocidad.	Lectura: The Concept of Bioelectromagnetism, Subdivisions of Bioelectromagnetism (Malmivu and Plonsey)			
	Práctica de laboratorio: Teoremas de Stokes y de la Divergencia.	Lectura guía de laboratorio, página web del curso.			
5 Febrero 22 – 27	Premios Nobel en bioelectromagnetismo: leyes de la dinámica química presión osmótica, disociación electrolítica, estructura eléctrica del sistema nervioso, termoquímica, mecanismo del electrocardiograma, (22 FEBRERO – 06 MARZO) Primer parcial (22 FEBRERO – 08 MARZO) Registro de Notas	Lectura: Nobel Prizes in Bioelectromagnetism			

CONTENIDO PROGRAMÁTICO	Fecha Emisión: 2018/02/09	AC-GA-F-8
CONTENIDO PROGRAMATICO	Revisión No. 3	Página 4 de 9

	<i>Práctica de laboratorio:</i> Uso de Osciloscopio y Teoría de Errores	Lectura guía de laboratorio, página web del curso.
6 Marzo 01 – 06	Premios Nobel en bioelectromagnetismo: función eléctrica de las neuronas, función específica de fibras nerviosas, transmisión del impulso nervioso, canales en membranas celulares (22 FEBRERO – 06 MARZO) Primer parcial (22 FEBRERO – 08 MARZO) Registro de Notas	Lectura: Ecuación de Laplace (Feynman)
	Práctica de laboratorio: Espectrometría	Lectura guía de laboratorio, págin web del curso.
7 <i>Marzo</i>	Ecuaciones de Laplace y Poisson. Aplicaciones en el análisis de la membrana celular.	Lectura: Classification of Neuron Models,
08 – 13	Práctica de laboratorio: Ecuación de Laplace y Superficies equipotenciales	Lectura guía de laboratorio, págin web del curso.
8 Marzo 15 – 20	Célula nerviosa. Función bioeléctrica de la célual nerviosa.	Lectura: Models Describing the Function of the Membrane
70 20	Práctica de laboratorio: Circuito RC con fuente de voltaje alterna	Lectura guía de laboratorio, págin web del curso.
9 Marzo 22 – 27	Impulso eléctrico en el axón. Potencial de reposo de la célula.	
(Festivo Lunes 22)	Práctica de laboratorio: Circuito RLC con fuente con fuente de voltaje alterna	Lectura guía de laboratorio, págin web del curso.
Marzo 29 – Abril 03	SEMANA SANTA	
10 Abril	Ecuaciones de Nernst. Potencial eléctrico y campo eléctrico. Ecuación de difusión.	Lectura: Modern Understanding of the Ion Channels
05 - 10	Práctica de laboratorio: Curva de impedancia en un circuito RC.	Lectura guía de laboratorio, págir web del curso.
11 Abril 12 - 17	Biochip basado en fotoimpedancia para análisis de células tumorales y normales en microbiopsias. (12 AL 24 ABRIL) Segundo parcial (12 AL 26 ABRIL) Registro de Notas	Lectura: Four-Electrode Impedance Metho Applied to an Isotropic Bidomain
	Práctica de laboratorio: : Curva de impedancia en un circuito RLC	Lectura guía de laboratorio, págin web del curso.
12	Ecuación de Nernst-Planck.	Lectura:

CONTENIDO PROGRAMÁTICO	Fecha Emisión: 2018/02/09	AC-GA-F-8
CONTENIDO PROGRAMATICO	Revisión No. 3	Página 5 de 9

19 – 24	(12 AL 24 ABRIL) Segundo parcial (12 AL 26 ABRIL) Registro de Notas					
	Práctica de laboratorio: Curva de impedancia en un circuito con material biológico	Lectura guía de laboratorio, págir web del curso.				
13 Abril 26 – Mayo 01	Origen del potencial de reposo.	Lectura: The brain as a Bioelectric Generato				
(Festivo Sabado 01)	Práctica de laboratorio: Simulación de propagación de un impulso nervioso.	Lectura guía de laboratorio, págir web del curso.				
14 Mayo 03 – 08	Voltage de pinza o *Patch clamp*, ecuación generalizada de la corriente eléctrica a través de la membrana. Técnicas experimentales para la medición de la corriente de patch clamp y modelo eléctrico de la membrana celular. Voltaje de pinza para los voltajes de Nernst del sodio. Modelo de Hodgkin-Huxley para la membrana celular.	Lectura: Voltage-clamp Method Examples of Results Obtained with the Voltage-Clamp Method, Patch-clamp Method				
	Práctica de laboratorio: Transporte a través de una membrana sintética	Lectura guía de laboratorio, págir web del curso.				
15 Mayo	Activación eléctrica del corazón. Sistema de conducción eléctrica del corazón. Ondas de despolarización y repolarización del corazón.	Lectura: Electric Activation of the Heart				
10 - 15	Práctica de laboratorio: Transporte a través de una membrana biológica	Lectura guía de laboratorio, págir web del curso.				
16 Mayo 17 - 22 (Festivo Lunes 17)	Fibra aislada: Fuente de la corriente de transmembrana. Equivalentes para las densidades de monopolos y dipolos. Conductores multicelulares. Naturaleza de las fuentes biomagnéticas. Dipolo magnético de una fuente volumétrica. Electroencefalografía. Magnetoencefalografía	Lectura: Source Models				
	Práctica de laboratorio: Socialización de notas	Lectura guía de laboratorio, págir web del curso.				
17- 18 Mayo 24 - Junio 08 (Festivo Lunes 07) (24 MAYO - 05 DE JUNIO) EXAMEN FINAL Y SOCIALIZACIÓN DE NOTAS (24 MAYO - 08 DE JUNIO) Digitación de notas						

Adendo:

CONTENIDO PROGRAMÁTICO	Fecha Emisión: 2018/02/09	AC-GA-F-8
CONTENIDO PROGRAMATICO	Revisión No. 3	Página 6 de 9

A continuación se relacionan las prácticas de laboratorio correspondientes a las asignaturas ofertadas por el Departamento de Física que se realizarán en el periodo académico 2021- 1, el cual es un semestre atípico debido a la pandemia causada por el COVID-19.

Or de n	Fisica Mecánica	Física Calor y Ondas	Física Electricidad y Magnetismo	Física Óptica y Acústica	Biofísica Ing. Biomédica	Campos Electromagn éticos y Biocampos	Física General Biología	Biofísica Biología	Física General Horticultura	Física Mecánica TEC	Física Oscilaciones y Ondas TEC
1	Inducción al laboratorio	Inducción al laboratorio	Inducción al laboratorio	Inducción al laboratorio	Inducción al laboratorio	Inducción al laboratorio	Inducción al laboratorio	Inducción al laboratorio	Inducción al laboratorio	Inducción al laboratorio	Inducción al laboratorio
2	Teoría de errores	MCU	Electroscopi 0	MAS. Sistema masa resorte	Análisis de Un experimento - video	Uso de Osciloscopi o y Teoría de Errores	Teoría de errores	Análisis de Un experimento - video	Teoria de errores	Teoría de errores	мси
3	Análisis de gráficas	Momento de inercia	Aparatos de medición eléctrica	MAS. Péndulo simple	Densidades . Principio de Arquimedes	Espectrom etría	Análisis de gráficas	Densidades . Principio de Arquimede s.	Aparatos de Medición	Análisis de gráficas	Momentos de Inercia
4	Cinemátic a. MRU y MRUA	Rodadura	Lineas equipotenci ales	Ondas estacionari as	Viscosidad	Circuito RC con fuente de voltaje alterna.	Movimiento Parabólico	Dilatación lineal	Relación Lineal	Cinematica Movimiento rectilineo	Rodadura
5	Superposi ción: movimient o parabólico	MAS sistema masa resorte.	Ley de Ohm	Reflexión y refracción en superficie plana y superficie esférica	Dilatación lineal	Circuito RC. Curva de impedancia	Dinámica	Calor específico	Movimiento Parabólico	Movimiento Parabólico	Movimiento armónico
6	Fuerzas concurrent es	Pendulo simple y físico.	Leyes de Kirchhoff	Sistema dos lentes delgadas	Ley de enfriamient o de Newton	Circuito RLC con fuente con fuente de voltaje alterna	Tension superficial	Ley de Ohm	Ley de Hooke	Fuerzas concurrent es	cubeta de ondas
						Cum as al-					
7	Dinámica	Ondas estacionari as	Circuito RC	Difracción por abertura	Calorimetrí a	Curva de impedancia en un circuito RLC	Conservació n de la energía	Circuitos eléctricos con resistencias	Conservaci ón de la energía	Dinámica	electroscopio

CONTENIDO PROGRAMÁTICO	Fecha Emisión: 2018/02/09	AC-GA-F-8
	Revisión No. 3	Página 7 de 9

8	Conservac ión de la energía	Densidade s. Principio de Arquimede s.	Magnético.	Experimen to de Young.	Reflexión y refracción en superficie plana y superficie esférica	Curva de impedancia en un circuito con material biológico	Momento	capacitores de placas paralelas con hortalizas	Densidad Principio de Arquimede s	Conservaci on de energia	lineas equipotenciale s
9	Choques	Calor específico.	Relación carga/mas a	Rejilla de Difracción y espectros atómicos	Difracción	Transporte a través de una membrana sintética	Pendulo simple	Inducción electromag nética	Dilatación lineal	Cantidad de movimiento . Choques	Circuito RC

METODO DE EVALUACION

La evaluación tiene tres momentos, cada una es de tipo escrito y contempla la presentación de tareas y actividades de trabajo en clase. Para dar pluralidad en la evaluaciones, los porcentajes de cada prueba son definidos desde la dirección del departamento de física.

Prueba Parcial (50%), trabajos, quices, tareas (50%).

BIBLIOGRAFÍA

- 1. http://www.bem.fi/ Bioelectromagnetism, Jaakko Malmivu and Robert Plonsey. New York Oxford OXFORD UNIVERSITY PRESS, 1995.
- 2. Biological and Medical Aspects of Electromagnetic Fields, HANDBOOK OF BIOLOGICAL EFFECTS OF ELECTROMAGNETIC FIELDS. EDITED BY Frank S. Barnes and Ben Greenebaum (2006). Taylor & Francis Group, LLC.
- 3. Nanofibers and nanotechnology in textiles / P.J. Brown, Brown, P.J, Woodhead Plublishing, 2007

MATERIAL COMPLEMENTARIO DE APRENDIZAJE PARA ESTUDIANTES

Enlaces en la red: Página del curso (Aula Virtual). Algunos de los contenidos incluidos en el aula virtual estarán en inglés.

Material Multimedia. Software: Matlab el cual está actualmente licenciado para la Universidad.

Biolelectromagnetism. Principles and Applications of Biomagnetic Fields. http://www.bem.fi/book/in/dw.htm European Virtual Campus for Biomedical Engineering. http://evicab.aalto.fi/

International Society for Bioelectromagnetism. http://www.isbem.org/

Doctoral education. http://www.bem.fi/edu/doctor/doctors.htm

Lecture videos. Jaakko Malmivuo: Biolectromagnetism. http://evicab.aalto.fi/abem/14malmi/0720s/index.htm International Journal of Biolectromagnetism. http://www.ijbem.org/

Lybrary of publications. http://www.bem.fi/library/index.htm

El uso no autorizado así como la reproducción total o parcial de su contenido por cualquier persona o entidad, estará en contra de los derechos de autor.

CONTENIDO PROGRAMÁTICO	Fecha Emisión: 2018/02/09	AC-GA-F-8
CONTENIDO PROGRAMATICO	Revisión No. 3	Página 8 de 9

COMPETENCIA DEL DOCENTE

El docente del curso de Campos Electgromagnéticos y Biocampos, es un orientador actualizado en las novedades sobre la asignatura, conocedor del impacto social y profesional que el futuro ingeniero biomédico podría tener en el ámbito laboral. Además, el docente entre sus competencias es ejemplo al ser organizado, preparado, tolerante, abierto a preguntas, innovador, entusiasta y social.

CONTROL DE CAMBIOS

CAMBIO REALIZADO	JUSTIFICACIÓN DEL CAMBIO	ACTA DE APROBACIÓN		
Creación contenido programatico	Creación y aprobación de contenido programático.	Acta 09 del comité de Currículo de la facultad de Diciembre 19 de 2018		
Inclusión de rúbrica de evaluación	Incluir rúbrica de evaluación a los contenidos programáticos, evaluación por competencias	Acta N°04 de abril de 2019 del Comité de Currículo y Autoevaluación de la FACCBA		
Actualización de fechas periodo 2019-2	Modificación en el cronograma de las fechas para el semestre 2019-2	Acta N ^a 024 de Comité de Departamento 17 de Junio de 2019		
Actualización de fechas periodo 2019-2	Revisión y actualización de las fechas de acuerdo al calendario académico.	Acta 07 del Comité de Currículo de la FACCBA de julio 30 de 2019		
Actualización fechas para el periodo 2020-1	Actualización de Fechas periodo 2020-1	Acta Na 069 de Noviembre 18 de 2019 Comité de Departamento		
Actualización de fechas periodo 2020-1	Revisión y actualización de las fechas de acuerdo al calendario académico.	Acta 11 del comité de currículo de la FACCBA de diciembre 18 de 2019		
Actualización de Fechas periodo 2020-2	Se actualizan las fechas con base en el calendario 2020-2.	ACTA N°018 - 2020 de 08 de Junio del Comité de Departamento		
Actualización de fechas periodo 2020-2	Revisión y actualización de las fechas de acuerdo al calendario académico.	Acta 06 del comité de Currículo de la FACCBA de junio 18 de 2020		

El uso no autorizado así como la reproducción total o parcial de su contenido por cualquier persona o entidad, estará en contra de los derechos de autor.

CONTENIDO PROGRAMÁTICO	Fecha Emisión: 2018/02/09	AC-GA-F-8
CONTENIDO PROGRAMATICO	Revisión No. 3	Página 9 de 9

Actualización de Fechas periodo 2021-1	Se actualizan las fechas con base en el calendario 2021-1	Acta Nº 025 de Comité de Currículo de Departamento de noviembre de 2020	
Actualización de fechas periodo 2021-1	Revisión y actualización de las fechas de acuerdo al calendario académico.	Acta 11 del comité de currículo y autoevaluación de la FACCBA diciembre 15 de 2020	
Inclusion Adendo 2021-1	En el cual se aclaran las prácticas a realizar para el semestre 2021- 1 el cual es un semestre atípico.	Acta 01 de enero 20 de 2021 Comité de Departamento	